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SAMPLE SIZES FOR APPROXIMATE INDEPENDENCE OF LARG16T

AND SMALLEST ORDER STATISTICS

John L. Walsh

Southern Methodist University*

ABSTRACT

Let X  and X 1 be the largest and smallest order statistics,

respectively, of a random sample of size n. Quite generally,

X. and X 1 are approximately independent for n sufficiently large.

Minimum n for attaining at least specified levels of independence

are developed. Level of independence is measured by the maximum

difference between the true values of P(X 1 s x 1 ,X n s x n) and the

corresponding values assuming independence of X  and X 1 . The results

are for small maximum differences (say, at most .02) and apply to

all possible distributions for the population sampled. The value of

minimum n is the smallest allowable n for the continuous case

but can be too large otherwise. Minimum n is finite for all

nonzero differences.

INTRODUCTION AND RESULTS

The largest; and smallest order statistics of a random sample tend

to statistical independence as the sample size increases. That is,

consider a random sample of size n and let X n and X 1 be the largest

and Gmallest order statistics, respectively. Also consider

* Research partially supported by NASA Grant NGR 44-007-026
Also associated with ONR Contract N00014-68-A-0515.



P(X l :^ x l , X n I; x n ) - P(X l -'^ x l )P(X n ^ xn),

which is nonnegative. As n -+ co, the maximum of this difference

(over xi and x n ) tends to zero.

Since any n used is finite, there can be interest in how the

maximum difference of (1) is affected by n. More specifically, for

a given value of the maximum difference, what is the minimum n

such that this value is not exceeded? For example, what is the

minimum n such that the maximum difference is at most .001? When the

maximum difference is small, there is little error in using

P(X 1 s x1 )P(X n s x n ) as the joint cumulative distribution function

(edf) for X  and X1.

The expression developed for minimum n is based on approximations

but is eery accurate when the stated maximum difference is small

(say, at most .02). This expression provides the smallest permissible

value of n when the population sampled is continuous. A smaller

value of n could possibly be allowable when the population edf

F(x) is discontinuous, since F(x l ) and/or F(x n) might not be able

to have the values that maximize (1).

Let 6 be the specified value for the maximum difference. At most

this value occurs if

n z	 - 1	 (1 + [1 - 4log e(1 - 6e2)] 1/2 ]

2 loge (1 - 6e2)

(1/6)e-2 + 1/2 i .1353/6 + . 5 9 ( 6 s .01).

For example, the maximum differe me is at most .005 if n z 28.

These results, which are applicable for all possible F(x),

again show that X n and X1 tend to independence as n	 That is, no
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matter how small 6 is, there are values of n such that the maximum

difference is less than 6 (say, at most 6/2).

DERIVATIONS

Get a = a(x n) and b = b(x l ) be defined by P(X n :5 x n ) = e-a,

P(X 1 s xl ) a l - e
-b0 In the derivations, all values of a and b

in the range zero to infinity are considered to be possible (corresponds

to the continuous case). Then,

F(xn) = e-a/n,	 1 - F(x 1 ) = e -b/n,

so that, in general.,

P(X I
 s x1 ,Xn s x n ) = F(x n ) n - [F(xn ) - 

F(xl)]n

= e -a - ( e-a/n -1 + e-b/n ) n.

if X  and X 1 are independent,

P(XI s x l , X  s x n) = F(xn ) n - Ax n) 
n [l - F(xl) ]n

e-a:	 a -( a+b)

Thus, the value of (1), the difference of these two probabilities,

can be expressed as

e 
-

 
(at-b) - e

-a[1 - e a/n + e(a-b)/njn

which, by some expansions in terms of I/n, equals

e-(a+b)- a-a exp[-b - ab/n - ab(a+b)/2n 2 + 0(1/n3)

we -( 
a+b) (I - exp[ -ab/n - ab(a+b)/2n2j,

for n sufficiently large (say, n z 8)and a + b not large. It is to be

noted that a + b s - loge   in all cases where the difference is to

be at most 6.
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This expression is set equal to 8 # (8 : a02), and the n

(not necessarily an integer) yielding this value is determined.

Then, this expression for n is maximized with respect to a and b.

First, consider the more crude approximation where terms of

order 1/n2 are neglected. Then,

e-(a+b) (I - e-ab/n) = 6

so that

n :!: - ab/log e(. - 6ea+b)

(1/ 6) abe-(a+b ) r

Thus, to this order of approximation, a -- b 1 are the maximizing

values. That is, the true maximizing values for a and b should be

near unity.

Now consider the approximation where terms of order 1/0 are

neglected. This yields the quadratic equation

n2 + nab/loge0 - 6e a b ) + ab(a+b)/21og e(1 - 6ea+b) 0 I

with solution

2n = -[ab/loge" - 6ea+b)

x{1 + [1 - 2(a+b)(ab) -l loge(l - 6e a-i-b ) j1/21.

Expansion with respect to 6 yields

n6 = abe-(a+b)[1+(1/2) 6ea+b j-1[1 + (a+b)(2ab) -1 6e
a+bI + 002),

so that Jogen6 equals

loge   + log eb - a	 b - (1/2)6e ai-b
 + (a+b)(2ab) -1 6e

a+b
 + 0(b2).

This ,montonically increasing function of n is maximized with respect

to a by setting aloge n8/aa equal to zero, yielding



(1/2) 6e a+b [x - (a*b)/ab — I/aka

+(a+b)/alb] + (x(62) = 0.

Let the terms of order 62 be neglected. Also, since 6 is

small, the solution for the case where terms of order 1/n 2 are

neglected should be usable in the coefficient of 6. This yields

the solution a = 1, and a similar analysis yields the sulution

b = 1. Thus, a = b = 1 is the maximizing choice (to a good

approximation) even when terms of order X/n 2 are included. Use of

a r b = 1, combined with n being an integer, Yields the expression

stated for determining minimum n for given 6.
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